NAMING AND ADDRESSING FOR IPv6

Jim Reid
Manager, European Operations
Jim.Reid@nominum.com
About Nominum

based in Redwood City, California

European office in Amsterdam - summer 2002

VC funded

~50 employees today

engineering led company:

- 60% developers or consultants

already a global company

- employees in EU, US, Singapore and Australia
Internet Software Consortium

US not for profit corporation

- solicits donations from industry and government

provides reference implementations of internet protocols

- Open Source

- unrestricted licensing, like BSD Unix

contracted Nominum to produce BIND9

- Nominum ended up "sponsoring" BIND9
Nominum Corporate Overview

DNS and DHCP technology experts

- we write the world’s DNS and DHCP software
- driving IETF standards efforts
- provide the reference implementations of the protocols

committed to Open Source and open standards

value-added commercial offerings
DNS

Domain Name System

translates hostnames to IP addresses and vice versa

- eg www.example.com has IP address 10.11.12.13

actually a global distributed database

- also used for mail delivery, locating services, etc

- could become a simple PKI: Secure DNS (DNSSEC)

- vital for emerging technologies like ENUM

IPv6 will be almost impossible without DNS
DHCP

Dynamic Host Configuration Protocol

critical for "plug and play" networking

DHCP server enforces local network policy

- issues operational parameters to clients:
 - IP address, local network mask, default route

- addresses of network servers:
 - DNS, file, print, NTP, web proxies, etc

- vendor-specific options
DNS Software - BIND

Berkeley Internet Name Domain

most important application on the internet

approx 80% of the world’s name servers run BIND

all 13 internet root servers run BIND

- so do 99.9% the ccTLD and gTLD servers
- most ISPs with large DNS content use it too

if BIND fails, the internet stops
BIND9

the current major release of BIND DNS software

complete rewrite and architectural redesign:

- DNS for the 21st century
- threading
- huge DNS content
 - 2.5Gbytes for .com (and growing!)
- latest DNS developments:
 - IPv6 support, Secure DNS (DNSSEC)
Infrastructure Basics

DNS server

- for looking up names and addresses

DHCP server

- allocation of network operating parameters to devices

DHCP client

- eg desktop or mobile device: 3G phone, Palm Pilot, laptop

DNS resolver

- lookup software in a device to query a DNS server
Interaction between DNS and DHCP

DHCP server updates DNS content

- when clients enter and leave the network
- when clients renumber or relocate (roving users)

DHCP server tells clients how to configure their resolvers

- ie where the device should send its DNS queries

Every non-trivial IP based network will have this interaction
run an IPv6 capable name server!

- BIND9 is the only open source alternative
- Nominum also has a proprietary (closed) solution

run a DHCPv6 server!

- none currently available
 - standards not yet finalised
 - nothing concrete to implement so far
- funding issue for ISC
IPv6 resolver

- send queries over IPv6
 - IPv6 Transport

- understand new (complex) DNS record types

- provided in BIND9.2

IPv6 client

- must have an IPv6 stack (obviously.....)
Why DHCPv6?

IPv6 autoconfiguration is not enough!

- unregulated network access

- configure higher-level network parameters for clients:
 - location of DNS, web, proxy servers

- authentication of clients
 - fine-grained operational parameters

- control of DNS content
 - trust the DHCP server, not the client!

- DHCPv6 server can "push" changes to clients
DNS & IPv6 Issues for the Internet

BIND9 needed for IPv6

- new resource record support

BIND9 not yet widely deployed

complex IPv6 migration strategy for the Internet

- awkward problems for the root servers

- transitioning name server infrastructure without breaking anything

- nobody is really sure how to do this yet
Why BIND9?

- performance on multiprocessors
- SecureDNS (DNSSEC)
- Secure Dynamic Update
 - fine-grained control of Dynamic Updates
- IPv6 support
 - DNS resource records
 - AAAA, A6, DNAME, binary labels
 - quad-A synthesis
QUESTIONS?