IPv6 in the Home Makes Sense

Tim Chown
University of Southampton
tjc@ecs.soton.ac.uk

EU IPv6 Task Force Meeting
12 September 2002
Home networking

Five years ago…
- Restricted to a smaller number of PCs
- Connectivity via on-demand 56k dialup
- Access *from* the home to the Internet

Now...
- New IP-enabled devices emerging
- Always-on broadband connectivity emerging
- Business and work habits changing

Creating potential for…
- New services within and *into* the home
Potential network devices

- Including:
 - PC devices – including laptops and PDAs
 - Gaming consoles, e.g. PlayStation 2
 - Webcams, MP3 players, ...
 - IP phones
 - White goods: fridges, microwaves...
 - Home control and automation devices
 - Wall-mounted digital picture displays
 - Portable digital video or audio players
 - Digital TV, Tivo, TV conferencing systems
 - Utility devices, e.g. electricity meter
 - Cars
IP for cameras

- Nokia 7650, Ericsson T68i
 - Picture messaging
 - Mainly over GSM

- Panasonic has produced an 802.11b wireless webcam
 - Easier deployment

- Ricoh has a wireless digital camera: i700
 - Web server built in
IP for fridges

- The infamous “Internet fridge”
 - Now made by LG Electronics
- Includes:
 - LCD display
 - 4 Speakers
 - Email client
 - Possibly a webcam
IP for microwaves

- Built in Japan:
 - Sharp RE-M210
- Web browser
 - Download recipes
 - Uses “cooking data device”
- Can work with set of basic ingredients
IP for sensor devices

- Temperature sensor MicroNode
- Always-on, large-scale deployment
- InternetNode ran demo at Networld
 - http://i-node.co.jp
- Runs IPv6, Java VM, on 40Mhz CPU, 1MB RAM
- Collaboration of WIDE and Yokogawa
Key components

- Home networking needs a combination of
 - Direct network layer connectivity
 - Restore original Internet principles
 - Always-on bandwidth (in and out)
 - Broadband deployment needed
 - Easy physical connectivity
 - Leverage residential wireless LANs

- We are “creating the edge”
Broadband: xDSL and cable

- **Rapid growth of adoption in recent months in UK:**
 - Jan 2002: 332,000
 - Jun 2002: 709,000
 - Aug 2002: 810,000
- Current UK growth 50,000 users per month
- But limited bandwidth compared to Japan and the USA, typically
 - 512K downstream
 - 256K upstream
- Upstream is important to serve applications from the home.

- **UK breakdown:**
 - NTL home 37% (Cable)
 - Telewest 23% (Cable)
 - BT Openworld/BT Broadband 17% (ADSL)
 - Others (BT Wholesale) 15% (ADSL)
 - BT business 8% (ADSL)

- **Overall:**
 - Total Cable 60%
 - Total ADSL 40%
 - Target set for 5M UK users by 2005.
ADSL in Europe

- Led by SE, DE, BE, DK
- Barriers include serving remote locations, unbundling of the local loops, …

![DSL lines of total lines chart](image)

Source: ECTA, April 2002
Why not IPv4?

- Limited IP (IPv4) address space
- Home nets typically have 1 global IPv4 address
- Internal devices on a network must therefore use private addresses and Network Address Translation (NAT).
 - NAT is acceptable for simple applications with client in the home and server on the Internet (e-mail, Web surfing, file downloads…)
 - NAT breaks end-to-end IPsec
 - Running two services on two internal devices (e.g. web servers) means only one can use the standard service port (80 for http)
 - Many home devices will have web interfaces
Home network requirements

- Need devices to be globally reachable
- Want “plug and play” networking
- Low configuration and maintenance
 - Simplicity for average user
- Security of access to home devices
- Allow a wide range of devices
 - But using common protocols – http, snmp
 - Running over various media
 - Wire(less), Firewire, IP over power
 - 802.11a for higher quality video
IPv6 Advantages

- IPv6 includes
 - Huge IP address space
 - Ability to globally address devices
 - Thus no need to battle with NAT
 - Stateless autoconfiguration
 - Adds to simplicity for typical users
 - IPsec support should be present in a “full implementation” of IPv6
 - Developers can thus build secure applications
 - Improved Mobile IP functionality
 - Site-scope addressing for the home
IPv6 and Security

- Primary IPv6 definition lies in RFC2460
 - States that a “full implementation” includes both AH and ESP security headers.
 - But RFC2460 does not mandate use of IPsec
 - To date, many IPv6 implementations do not include support for IPsec, but changing, e.g. Mobile IPv6
 - Should LCNA devices include a full IPsec implementation?
- Security also can apply to physical layer
 - 802.11b uses WEP encryption
- ... and to the transport or application layer
 - e.g. SSL or PGP
- Application of security must be easy for users
 - Use simple “association” mechanisms
 - No widespread PKI deployment yet
IPv4-IPv6 migration

- Two philosophies…

- IPv6-only internal networking
 - Requires transition aids at the home gateway router
 - e.g. NAT-PT or proxy services
 - Or content providers offer dual IP services
 - e.g. use IBM Web Services, Microsoft .NET

- Dual-stack internal networking
 - Keep IPv4+NAT for some devices
 - e.g. for existing PC usage
 - New devices can be IPv6-only
 - Allows incremental introduction of IPv6
Peer to Peer Applications

- Made (in)famous by file sharing applications like Napster and Gnutella
 - People associate p2p with piracy, but it offers more…
- Peer to Peer implies direct communication
 - Person or device to person or device
 - Requires globally addressable IP devices
- IP networking capability appearing in smaller, low-power devices
 - SD-format card with 802.11b
 - Web server on a Bluetooth chip
- But p2p empowers end user, not a sold ISP service
 - ISP should offer supporting services (multicast, etc)
IPv6 for gaming

- PlayStation 2 includes IPv6 support
 - Developed for a broadband adaptor
 - Dual-stack IPv4-IPv6 implementation
 - Included in the Standard Developer Kit
 - Integrate games, movies and music
- Any home can run a gaming server
 - No NAT tricks required
 - Reduces the server costs for developer
 - Except for large-scale role-playing games
 - Developer can add new features in games
 - e.g. VoIP for player chatting
IPv6 for webcams

- Examples like Jennicam (1996-)
 - People actually like “big brother”
 - Many webcams in a single house…
IPv6 for utilities

- Meter readings periodic, often estimated
- Possible to offer IPv6 metering
 - Could develop SNMP objects for metering or run over http protocol
- Always-on monitoring adds value:
 - Real-time information on customer usage
 - Could help understand customer needs
 - Reduces need for staff to read meters
- Can also run IP over power lines
 - Gain IP service and metering in one go
 - See the EU IST programme 6POWER project
New applications

- Combination of IPv6, broadband and Wireless LANs
- Examples…
 - Ad-hoc video-based conferencing (safer for kids)
 - Watch movies on portable displays
 - Watch over baby on the fridge display
 - Monitor or control home remotely, including Tivo
 - Check on elderly relatives via device activity
 - Share cooking recipes with friends
 - Compare weight loss with friends
 - Location-awareness – is my friend at home?
 - Run new types of games between friends’ houses
 - Includes remote control WLAN toys
 - Enable remote diagnosis of appliance and vehicle faults
 - Upload music and videos to in-car entertainment devices
 - Take part in interactive distance learning
 - …
IPv6 for embedded devices

- Home devices need cheap networking
 - Low Cost Network Appliances (LNCA)
 - Such devices have limitations
- IETF IPv6 WG has some “minimum requirements” Internet Drafts
- Includes LNCA, though not yet adopted by IPv6 WG:
 - Non-PC embedded systems
 - See: draft-okabe-ipv6-lcna-minreq-02.txt
- Some debate over special requirements
 - Would all LCNA devices support all IPsec?
 - Do LCNA devices need transition aids?
Home deployment issues

- Must deploy new IPv6-enabled edge router
 - May be native IPv6, more likely to offer 6to4
 - IPv6 islands over IPv4 better than NAT islands
 - May run IPv6-only, but likely to be dual stack now
- Missing standards pieces
 - e.g. IPv6 prefix delegation
- ISP available address space
 - A /32 is “only” 65K static /48 customers
 - Static assignment avoids need for Dynamic DNS
 - But how will devices be (DNS) named?
- Other requirements
 - Service discovery, QoS, IPv6 Multicast, intrusion,…
 - Interactions with personal area networks (PANs)
Look to Japan…

- IPv6 Promotion Council Showroom
 - IPv6 Galleria
- http://www.v6pc.jp/
The future...

- IPv6 is ready and deploying to the home now
 - Dual stack services in Japan (NTT and IIJ)
 - New gateway device required, but can be incremental if IPv4 supported also
 - New ISP infrastructure required for native IPv6 to the home
- Broadband and wireless also key enablers
 - Now well over 10 million European broadband users
- IP-enabled devices appearing
 - IPv6 solves global addressing/NAT problem
 - Should develop for at least dual-stack now (e.g. PS2)
 - End user will probably never know IPv6 is used
- New applications enabled
 - New opportunities for start-up and existing companies
- Still scope for research and development